Rheolution's Resources in Life Sciences
Documents to help you start your Soft Matter Analytics™ Journey
APPLICATION NOTES
Case studies done by Rheolution’s application specialists
APPLICATION NOTES
Case studies done by Rheolution’s application specialists
Growing demands for quicker cell quantification methods push beyond traditional cell counting chambers, prompting innovative solutions that facilitate accurate counting while diminishing time. Turbidity, reflecting solution cloudiness in the presence of light scatterers, emerges as an effective means to accelerate cell quantification. In this application note, a strong correlation was established between turbidity (FTU) of a S. cerevisiae culture solution and cell numbers (cells/mL) counted with a conventional cell counting chamber...
In the realm of bioengineering and biotechnology, cells serve as catalysts for the production of diverse valuable products, such as biofuels, pharmaceuticals, antibodies, industrial enzymes, and bio-based chemicals [1]. Within this context, yeast, a widely utilized microorganism, plays a pivotal role. Monitoring yeast growth is of utmost importance to ensure optimal conditions and productivity in biotechnological processes [2]. Traditionally, spectrophotometric analysis has been used to assess the optical density at 600 nm (OD600nm) by measuring the absorption of light by the yeast ...
The sedimentation kinetics of suspended particles provides crucial information for optimizing manufacturing and infrastructure across industries, while also contributing to the design of drugs and cell therapies. Turbidimetry is a quick and nondestructive method to precisely determine the sedimentation kinetics of suspended particles. The decrease in turbidity of silica particles in distilled water as a function of time was obtained with high precision using the TURBIDI.TTM. This curve gives information about the sedimentation behavior and rate of the suspended particles ...
The determination of particle size is important in many fields, such as life sciences (nanomedicine, drug delivery, tissue engineering, bioanalysis), chemical, environmental sciences and industries. Turbidimetry is a quick and nondestructive method to estimate particle size following an easy-to-follow procedure. Curves of turbidity vs silica particle concentration in distilled water of various sizes were obtained with high precision using the TURBIDI.TTM. These curves can be used to build a reference curve for the determination of particle size.
A suspension is a mixture in which solid particles (organic or inorganic in nature) are dispersed in a liquid medium, but not dissolved. Suspensions are usually opaque or cloudy and can settle over time due to gravity. They have a broad range of applications and are present in various industrial processes, such as chemical, pharmaceutical, food and beverage, and environmental industries. During the production of pharmaceutical formulations for example, professionals may measure particle concentration to assess whether particles have aggregated or formed larger clusters to optimize the process and ensure product quality.
Determining the solubility point of compounds is key to optimizing performance, quality, and purity across various scientific fields and industries. Discover how we successfully determined the solubility point of sodium bicarbonate in distilled water using the innovative TURBIDI.T™ instrument.
TECHNICAL NOTES
These articles provide further technical details and specifications about the topic treated in these publications
TECHNICAL NOTES
These articles provide further technical details and specifications about the topic treated in these publications
The μ-volume sample holder was developed as an alternative to the macro-volume sample holder for projects where sample volume is restricted. Due to the non destructive nature of the technology, the sample can be kept in both sample holders and retested multiple times to follow the mechanical profile over time of the sample in controlled environments. One important difference is that the μ-volume sample holder was designed to fit in a 12-well plate for easy sample incubation, and completely autoclavable (made of stainless steel) to better maintain sample sterility cellularized hydrogels ...
The ElastoSens™ Bio is a compact analytical instrument that measures the viscoelastic properties of soft materials following easy and quick steps guided by the Soft Matter Analytics™ App. Prior to testing, the sample to be measured needs to be inserted into the available sample holders specifically designed for the ElastoSens™ Bio. This step plays a key role in ensuring the quality of the data obtained from the instrument. The μ-volume sample holder was developed for applications in which sample volume is limited, such as for natural polymers, blood and plasma ...
TURBIDI.T™ is a technology that accurately measures the turbidity of solutions across a broad spectrum. Its effectiveness has been tested against an established turbidimeter and the results have indicated that both technologies yield consistent measurements for formazin solutions of varying concentrations.
The NEPHEL.O™ nephelometer is a reliable instrument that performs comparably to established and commercially available nephelometers. It provides precise measurements of low turbidity solutions with good repeatability.
Freeze-drying is a common method to produce porous scaffolds from a hydrogel composed of natural or synthetic polymers. In a number of cases, the polymeric solution is crosslinked (bonds or interactions are established among the polymeric chains) and the hydrogel is then freeze-dried to obtain the porous and dried scaffold (1-3).
ElastoSens™ Bio is a compact instrument adept at measuring the viscoelastic properties of soft materials. Its patented Viscoelasticity Testing of Bilayered Materials (VeTBiM) technology relies on a bi-layered system, including a sample and a flexible membrane, that responds to induced vibrations. This cutting-edge tool allows for precise analysis of resonance properties, sample height, and temperature, providing comprehensive data on a material's viscoelastic characteristics. Its non-destructive method ensures samples can be reused for subsequent tests or other purposes.
ELASTOSENS™ BIO HOW TO SERIES
ELASTOSENS™ BIO HOW TO SERIES
01. Installation of the ElastoSens™ Bio
02. Daily Vibration Calibration for ElastoSens™ Bio
03. Configure a Test on the ElastoSens™ Bio
04. Build Test Sequences with ElastoSens™ Bio
05. Data Visualisation on the ElastoSens™ Bio App
06. Export ElastoSens™ Bio’s data to Excel
07. Retest a sample using the ElastoSens™ Bio
08. Create custom fields on the ElastoSens™ Bio
09. Create custom buttons on the ElastoSens™ Bio
10. How to clean the ElastoSens™ Bio
11 .Calibrate the temperature of the ElastoSens™ Bio
12. Calibrate the height of the ElastoSens™ Bio
13. How to use the µ-volume sample holder for ElastoSens™ Bio?
RHEOLUTION ARTICLES
Original articles prepared by our application specialists commenting on topics of interest to our community
RHEOLUTION ARTICLES
Original articles prepared by our application specialists commenting on topics of interest to our community
Ever fantasized about sci-fi healing tanks? The principle of neutral buoyancy behind them has sparked a unique solution for 3D printing with soft, liquid-like inks. The Freeform Reversible Embedding of Suspended Hydrogels (FRESH) bioprinting technique has been developed to support the printing of these tricky materials, ideal for tissue engineering applications. The secret lies in a cleverly engineered support bath, able to hold the soft structures while permitting extruder needle movement. With versatility, high cell viability, and potential for large construct printing, FRESH opens up a world of possibilities, bringing us a step closer to 3D bioprinting patient-specific tissues based on anatomical data.
Microgels are hydrogel particles that can be used in tissue engineering due to their unique properties, such as high water content and the ability to encapsulate bioactive factors. These microparticles provide a high surface area that facilitates better cell growth, nutrient transfer, and improved cell interactions. They can be used independently or incorporated into a larger "carrier" hydrogel system. Due to their injectability, they're useful in non-invasive surgical procedures. Microgels can also serve as inks in 3D and 4D bioprinting, creating scaffolds for cells either before or after printing.
Artificial intelligence (AI) is used to mimic human decision-making in areas like healthcare. Classic AI, also known as symbolic AI, uses human-crafted rules for decision-making. An example is in clinical decision support systems where rules help determine drug interactions and alert users of contraindications.
4D bioprinting introduces "time" as the fourth dimension, enabling printed objects to change over time. Physical stimuli like light, temperature, or magnetism can induce transformations. The bioprinting process can also allow targeted drug release through changes in temperature or pH. Nano-hydrogels can serve as drug carriers, directed by magnetic fields, and can be quickly degraded by enzymes. Furthermore, hydrogels can react to biological signals, aiding in tumor treatment by releasing drugs then biodegrading over time.
3D-bioprinting involves printing a biomaterial or 'bioink' that contains cells, forming structures similar to living tissues. The process requires careful optimization to ensure the material holds its shape and function, and that the cells survive the printing process. Current bioprinting techniques, such as extrusion, inkjet and laser-assisted bioprinting, come with their own advantages and limitations. The ultimate goal is to bring in vitro bioprinting into the operating room, overcoming challenges like sterility, regulation, and ethical considerations.
Hemostatic agents (HAs) can be absorbable, biological, or synthetic. Absorbable HAs, like gelatin or oxidized cellulose, speed up clotting and are naturally absorbed by the body. Biological HAs include thrombin, fibrinogen, and platelets which are key to blood clotting. Synthetic HAs, such as polyethylene glycol, form strong sealant matrices. The choice of HA depends on the type of bleeding, tissue interaction, and patient's coagulation profile. Instruments like the ElastoSens™ Bio provide valuable data on HA efficacy by measuring blood absorption and coagulation kinetics.
ARTICLES OF THE MONTH
Each month, a published scientific article that covers a theme of interest to our community is summarized and commented by our application specialists
ARTICLES OF THE MONTH
Each month, a published scientific article that covers a theme of interest to our community is summarized and commented by our application specialists
Exploring the frontier of 3D printing, Cornell University researchers have enhanced the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) method. They introduced a computational approach for non-planar printing, enabling complex curved structures, improving printing accuracy and augmenting the mechanical properties of bioprints.
Researchers at the DWI – Leibniz-Institute for Interactive Materials, Aachen, Germany have developed injectable microgels that can be magnetically oriented within a larger hydrogel to regenerate various types of tissue. The team began by functionalizing a material called six-arm poly(ethylene oxide-stat-propylene oxide) with acrylate groups, which can be broken down and removed by the kidney. Superparamagnetic iron oxide nanoparticles, which can align to an applied magnetic field, were mixed into the functionalized material. The team then crosslinked this mixture with UV-light to form microgels. To increase the contact surface with cells, a peptide containing the RGD sequence, a focal adhesion point for cells, was grafted onto the microgels. This innovative strategy provides a promising tool for tissue regeneration.
The development of tissue engineering products faces challenges due to the variety of biomaterials available and their dynamic properties once implanted. A recent study used artificial intelligence (AI) to help address this problem. The researchers created a system that automates the prediction of gelation time (when a liquid solution becomes a hydrogel) for different formulations. The hydrogels were composed of silk, horseradish peroxidase (HRP), hydrogen peroxide, and bacterial cells. They utilized differential dynamic microscopy (DDM) to identify gelation time and machine learning (ML) to predict the gelation time of different hydrogel compositions. This allowed them to streamline the process of finding hydrogel formulations with specific properties.
4D-bioprinting introduces "time" into the printing process, allowing printed structures to evolve. Researchers from the University of Illinois Chicago used oxidized and methacrylated alginate (OMA) to develop a bioink for 4D bioprinting. They made OMA into precursor beads, then transformed them into a "microgel" that could be easily printed into stable 3D constructs. Mixed with cells, the microgel became a bioink, which was printed into complex structures. The printed constructs could be further crosslinked to create 3D scaffolds that could change shape due to differential swelling, adding the 4th dimension, "time," to the printing process.
Recent advancements in 3D-bioprinting have opened the possibility of creating engineered tissues mimicking human native tissues. However, reproducing the extracellular matrix (ECM) composition and microscopic architecture within the biomaterial ink remains challenging. To tackle this, a research group from the AO Research Institute Davos developed a bioink containing both collagen type 1 and tyramine derivative hyaluronan for tissue engineering. They used optimal concentrations of these two components, along with human bone marrow-derived mesenchymal stromal cells. Two crosslinking pathways were used to induce gelation and create a 3D scaffold that was then printed using the bioink's shear-thinning properties. They successfully printed an anisotropic hydrogel, achieving control over the microscopic organization of the matrix. This breakthrough could pave the way for better mimicry of native human tissues, especially anisotropic ones, in tissue engineering applications.
Scientists from Dalhousie University, led by Dr. Mark Joseph Filiaggi, investigated the sodium polyphosphate (NaPP) polymer as a potential hemostatic agent. They tested six formulations of the biomaterial, with varying degrees of polymerization and types of divalent cations. The hemostatic potential of these formulations was evaluated using various blood clotting assays. The biomaterial was mixed with coagulation reagents and recalcified blood or plasma in a tube, which was then shaken to visually assess blood or plasma flow. The clotting time was noted as the time required to achieve no flow. Surgifoam®, a commercial hemostatic agent, was used as a control.
SCIENTIFIC PUBLICATIONS
Published scientific articles using Rheolution’s instruments
SCIENTIFIC PUBLICATIONS
Published scientific articles using Rheolution’s instruments
Current treatments for glioblastoma (GBM) face challenges due to rapidly occurring tumor recurrences. In response, researchers have developed localized drug delivery systems, notably AT101-GlioMesh - an alginate-based mesh embedded with AT101-loaded PLGA microspheres. Fabricated for high encapsulation efficiency, this system ensures a sustained release of AT101, demonstrating a significant cytotoxic effect on GBM cell lines. This promising development could potentially revolutionize GBM therapy and prevent tumor recurrence.
Polysaccharide-based hydrogels offer great promise in 3D bioprinting due to their biocompatibility and cellular response, but their poor mechanical properties often require extensive crosslinking. The solution? Enter thermoresponsive bioinks. This study examines a triad of carboxymethyl cellulose, agarose, and gelatin as a potential thermoresponsive ink, demonstrating that specific blends can form stable hydrogels with desirable mechanical and physical properties. The bioinks' cytotoxicity was assessed on two cell lines according to ISO 10993-5 standards, and successful printing of complex 3D patterns confirmed their printability.
Dense collagen matrices, crafted through automated gel aspiration-ejection (GAE), offer exciting potential in the field of biofabrication. This study illuminates the crucial role fibrillization pH plays in both the real-time rheological changes during collagen hydrogel gelation and the properties of the resulting biofabricated matrices. Findings demonstrate a relative increase in hydrogel stiffness with higher gelation pH, with matrices demonstrating increased fibrillar density, alignment, and micro-compressive modulus at specific pH levels. Importantly, these matrices showed low cell mortality when seeded with fibroblasts. These findings may offer valuable insights applicable to other hydrogel systems and biofabrication techniques.
Understanding the biomechanical properties of arteries is complex due to their cylindrical shape and waveguide behavior. This study provides valuable insights by utilizing three-dimensional measurements on an artery-mimicking tube in water, categorizing the tube wall motion into transient and steady state responses. The study's approach enables a more accurate estimation of the motion and improves our understanding of wave propagation in arterial walls, presenting significant opportunities for enhanced measurement of arterial mechanical properties.
Researchers have devised a method called '3D wet writing' to create small-diameter arterial conduits. This technique uses ionic gelation for fabricating customizable constructs quickly and without a template. The constructs show mechanical properties similar to native blood vessels and demonstrate biocompatibility, indicating their potential use as vascular constructs.
User Cytocompatibility, biocompatibility, and biodegradability are amongst the most desirable qualities of wound dressings and can be tuned during the bioplatform fabrication steps to enhance wound healing capabilities. A three-stepped approach (partial-crosslinking, freeze-drying, and pulverisation) was employed in fabricating a particulate, partially crosslinked (PC), and transferulic acid (TFA)-loaded chitosan-alginate (CS-Alg) interpolymer complex (IPC) with enhanced wound healing capabilities.
EXPERT CORNER
EXPERT CORNER
Expert Corner Episode 3 Interview with Jeremy Teo Jeremy Teo received his PhD from the School of Medicine, […]
Expert Corner Episode 2 Interview with Bowman Bagley Bowman Bagley is the Managing Director of Advanced BioMatrix. He […]
Expert Corner Episode 1 Interview with Prof. Todd Hoare https://youtu.be/KP0VCq9kVz4 Todd Hoare is the Canada Research Chair in […]