A biopolymeric mesh enriched with PLGA microparticles loaded with AT101 for localized glioblastoma treatment
Dana Hellmold, Pietro Arnaldi, Michael Synowitz, Janka Held-Feindt and Mohsen Akbari
PUBLISHED IN: Biomedical Materials, IOPscience
ABSTRACT
Current treatment strategies for glioblastoma (GBM) including surgical resection and adjuvant radio/chemotherapy result in a limited progression-free survival time of patients due to rapidly occurring tumor recurrences. The urgent need for more effective treatments has led to the development of different approaches for localized drug delivery systems (DDSs) offering the advantages of reduced systemic side effects. A promising candidate for the treatment of GBMs is AT101, the R-(-)-enantiomer of gossypol due to its ability to induce apoptosis or trigger autophagic cell death in tumor cells. Here, we present an alginate-based drug-releasing mesh ladened with AT101-loaded PLGA microspheres (AT101-GlioMesh). The AT101-loaded PLGA microspheres were fabricated using an oil-in-water emulsion solvent evaporation method obtaining a high encapsulation efficiency. The drug-loaded microspheres enabled the release of AT101 over several days at the tumor site. The cytotoxic effect of the AT101-loaded mesh was evaluated using two different GBM cell lines. Strikingly, encapsulation of AT101 in PLGA-microparticles and subsequent embedding in GlioMesh resulted in a sustained delivery and more efficient cytotoxic effect of AT101 on both GBM cell lines. Thus, such a DDS holds promise for GBM therapy likely by preventing the development of tumor recurrences.
Related Scientific Publications
Polysaccharide-based hydrogels offer great promise in 3D bioprinting due to their biocompatibility and cellular response, but their poor mechanical properties often require extensive crosslinking. The solution? Enter thermoresponsive bioinks. This study examines a triad of carboxymethyl cellulose, agarose, and gelatin as a potential thermoresponsive ink, demonstrating that specific blends can form stable hydrogels with desirable mechanical and physical properties. The bioinks' cytotoxicity was assessed on two cell lines according to ISO 10993-5 standards, and successful printing of complex 3D patterns confirmed their printability.
Dense collagen matrices, crafted through automated gel aspiration-ejection (GAE), offer exciting potential in the field of biofabrication. This study illuminates the crucial role fibrillization pH plays in both the real-time rheological changes during collagen hydrogel gelation and the properties of the resulting biofabricated matrices. Findings demonstrate a relative increase in hydrogel stiffness with higher gelation pH, with matrices demonstrating increased fibrillar density, alignment, and micro-compressive modulus at specific pH levels. Importantly, these matrices showed low cell mortality when seeded with fibroblasts. These findings may offer valuable insights applicable to other hydrogel systems and biofabrication techniques.
Understanding the biomechanical properties of arteries is complex due to their cylindrical shape and waveguide behavior. This study provides valuable insights by utilizing three-dimensional measurements on an artery-mimicking tube in water, categorizing the tube wall motion into transient and steady state responses. The study's approach enables a more accurate estimation of the motion and improves our understanding of wave propagation in arterial walls, presenting significant opportunities for enhanced measurement of arterial mechanical properties.
Researchers have devised a method called '3D wet writing' to create small-diameter arterial conduits. This technique uses ionic gelation for fabricating customizable constructs quickly and without a template. The constructs show mechanical properties similar to native blood vessels and demonstrate biocompatibility, indicating their potential use as vascular constructs.
User Cytocompatibility, biocompatibility, and biodegradability are amongst the most desirable qualities of wound dressings and can be tuned during the bioplatform fabrication steps to enhance wound healing capabilities. A three-stepped approach (partial-crosslinking, freeze-drying, and pulverisation) was employed in fabricating a particulate, partially crosslinked (PC), and transferulic acid (TFA)-loaded chitosan-alginate (CS-Alg) interpolymer complex (IPC) with enhanced wound healing capabilities.
A study shows a new kind of superabsorbent hydrogels (SAHs) that remain ionized at all physiological pH levels. The optimized SAHs show improved absorbency and stronger mechanics when swollen, making them potential contenders for commercial hygiene products.