Carboxymethyl Cellulose-Agarose-Gelatin: A Thermoresponsive Triad Bioink Composition to Fabricate Volumetric Soft Tissue Constructs
PUBLISHED IN: SLAS Technology, April 2023, Volume 28, Issue 2
ABSTRACT
Polysaccharide based hydrogels have been predominantly utilized as ink materials for 3D bioprinting due to biocompatibility and cell responsive features. However, most hydrogels require extensive crosslinking due to poor mechanical properties leading to limited printability. To improve printability without using cytotoxic crosslinkers, thermoresponsive bioinks could be developed. Agarose is a thermoresponsive polysaccharide with upper critical solution temperature (UCST) for sol-gel transition at 35-37°C. Therefore, we hypothesized that a triad of carboxymethyl cellulose(C)–agarose(A)–gelatin(G) could be a suitable thermoresponsive ink for printing since they undergo instantaneous gelation without any addition of crosslinkers after bioprinting. The blend of agarose-carboxymethyl cellulose was mixed with 1% w/v, 3% w/v and 5% w/v gelatin to optimize the triad ratio for hydrogel formation. It was observed that a blend (C2-A0.5-G1 and C2-A1-G1) containing 2% w/v carboxymethyl cellulose, 0.5% or 1% w/v agarose and 1% w/v gelatin formed better hydrogels with higher stability for up to 21 days in DPBS at 37°C. Further, C2-A0.5-G1 and C2-A1-G1hydrogels showed higher storage modulus 762 ±182 Pa & 2452 ± 430 Pa, higher porosity of 96.98 ± 2 % & 98.2 ± 0.8 % and swellability of 1518 ± 68% & 1587 ± 25 % respectively. To evaluate the in vitro potential of these bioink formulations, indirect and direct cytotoxicity were determined using NCTC clone 929 (mouse fibroblast cells) and HADF (primary human adult dermal fibroblast) cells as per the ISO 10993-5 standards. Importantly, the printability of these bioinks was confirmed using extrusion bioprinting by successfully printing different complex 3D patterns.
Related Scientific Publications
Current treatments for glioblastoma (GBM) face challenges due to rapidly occurring tumor recurrences. In response, researchers have developed localized drug delivery systems, notably AT101-GlioMesh - an alginate-based mesh embedded with AT101-loaded PLGA microspheres. Fabricated for high encapsulation efficiency, this system ensures a sustained release of AT101, demonstrating a significant cytotoxic effect on GBM cell lines. This promising development could potentially revolutionize GBM therapy and prevent tumor recurrence.
Polysaccharide-based hydrogels offer great promise in 3D bioprinting due to their biocompatibility and cellular response, but their poor mechanical properties often require extensive crosslinking. The solution? Enter thermoresponsive bioinks. This study examines a triad of carboxymethyl cellulose, agarose, and gelatin as a potential thermoresponsive ink, demonstrating that specific blends can form stable hydrogels with desirable mechanical and physical properties. The bioinks' cytotoxicity was assessed on two cell lines according to ISO 10993-5 standards, and successful printing of complex 3D patterns confirmed their printability.
Dense collagen matrices, crafted through automated gel aspiration-ejection (GAE), offer exciting potential in the field of biofabrication. This study illuminates the crucial role fibrillization pH plays in both the real-time rheological changes during collagen hydrogel gelation and the properties of the resulting biofabricated matrices. Findings demonstrate a relative increase in hydrogel stiffness with higher gelation pH, with matrices demonstrating increased fibrillar density, alignment, and micro-compressive modulus at specific pH levels. Importantly, these matrices showed low cell mortality when seeded with fibroblasts. These findings may offer valuable insights applicable to other hydrogel systems and biofabrication techniques.
Understanding the biomechanical properties of arteries is complex due to their cylindrical shape and waveguide behavior. This study provides valuable insights by utilizing three-dimensional measurements on an artery-mimicking tube in water, categorizing the tube wall motion into transient and steady state responses. The study's approach enables a more accurate estimation of the motion and improves our understanding of wave propagation in arterial walls, presenting significant opportunities for enhanced measurement of arterial mechanical properties.
Researchers have devised a method called '3D wet writing' to create small-diameter arterial conduits. This technique uses ionic gelation for fabricating customizable constructs quickly and without a template. The constructs show mechanical properties similar to native blood vessels and demonstrate biocompatibility, indicating their potential use as vascular constructs.
User Cytocompatibility, biocompatibility, and biodegradability are amongst the most desirable qualities of wound dressings and can be tuned during the bioplatform fabrication steps to enhance wound healing capabilities. A three-stepped approach (partial-crosslinking, freeze-drying, and pulverisation) was employed in fabricating a particulate, partially crosslinked (PC), and transferulic acid (TFA)-loaded chitosan-alginate (CS-Alg) interpolymer complex (IPC) with enhanced wound healing capabilities.