Microfluidic 3D Printing of a Photo-Cross-Linkable Bioink Using Insights from Computational Modeling
Bahram Mirani, Evan Stefanek, Brent Godau, Seyed Mohammad Hossein Dabiri, and Mohsen Akbari
PUBLISHED IN: ACS Biomaterials Science and Engineering, 2021
ABSTRACT
Three-dimensional (3D) bioprinting of photo-cross-linkable hydrogel precursors has attracted great interest in various tissue engineering and drug screening applications, as the biochemical and biophysical properties of the resultant hydrogel structures can be tuned spatiotemporally to provide cells with physiologically relevant microenvironments. In particular, these bioinks benefit from great biofunctional versatility that can be designed to direct cells toward a desired behavior. Despite significant progress in the field, the 3D printing of cell-laden photo-cross-linkable bioinks with low polymer concentrations has remained a challenge, as rapidly stabilizing these bioinks and transforming them to hydrogel filaments is hindered by their low viscosity. Additionally, reaching an optimized print condition has often been challenging due to the large number of print parameters involved in 3D bioprinting setups. Therefore, computational modeling has occasionally been employed to understand the impact of various print parameters and reduce the time and resources required to determine these effects in experimental settings. Here, we report a novel 3D bioprinting strategy for fabricating hydrogel fibrous structures of gelatin methacryloyl (GelMA) with superior control over polymer concentration, particularly in a relatively low range from ∼1% (w/v) to 6% (w/v), using a microfluidic printhead. The printhead features a coaxial core–sheath flow, coupled with a photo-cross-linking system, allowing for the in situ cross-linking of GelMA and the generation of hydrogel filaments. A computational model was developed to determine the optimal ranges of process parameters and inform about the diffusive and fluid dynamic behavior of the coaxial flow. The cytocompatibility of the biofabrication system was determined via bioprinting cell-laden bioinks containing U87-MG cells. Notably, the established pipeline from computational modeling to bioprinting has great potential to be applied to a wide range of photo-cross-linkable bioinks to generate living tissues with various material and cellular characteristics.
Related Scientific Publications
Current treatments for glioblastoma (GBM) face challenges due to rapidly occurring tumor recurrences. In response, researchers have developed localized drug delivery systems, notably AT101-GlioMesh - an alginate-based mesh embedded with AT101-loaded PLGA microspheres. Fabricated for high encapsulation efficiency, this system ensures a sustained release of AT101, demonstrating a significant cytotoxic effect on GBM cell lines. This promising development could potentially revolutionize GBM therapy and prevent tumor recurrence.
Polysaccharide-based hydrogels offer great promise in 3D bioprinting due to their biocompatibility and cellular response, but their poor mechanical properties often require extensive crosslinking. The solution? Enter thermoresponsive bioinks. This study examines a triad of carboxymethyl cellulose, agarose, and gelatin as a potential thermoresponsive ink, demonstrating that specific blends can form stable hydrogels with desirable mechanical and physical properties. The bioinks' cytotoxicity was assessed on two cell lines according to ISO 10993-5 standards, and successful printing of complex 3D patterns confirmed their printability.
Dense collagen matrices, crafted through automated gel aspiration-ejection (GAE), offer exciting potential in the field of biofabrication. This study illuminates the crucial role fibrillization pH plays in both the real-time rheological changes during collagen hydrogel gelation and the properties of the resulting biofabricated matrices. Findings demonstrate a relative increase in hydrogel stiffness with higher gelation pH, with matrices demonstrating increased fibrillar density, alignment, and micro-compressive modulus at specific pH levels. Importantly, these matrices showed low cell mortality when seeded with fibroblasts. These findings may offer valuable insights applicable to other hydrogel systems and biofabrication techniques.
Understanding the biomechanical properties of arteries is complex due to their cylindrical shape and waveguide behavior. This study provides valuable insights by utilizing three-dimensional measurements on an artery-mimicking tube in water, categorizing the tube wall motion into transient and steady state responses. The study's approach enables a more accurate estimation of the motion and improves our understanding of wave propagation in arterial walls, presenting significant opportunities for enhanced measurement of arterial mechanical properties.
Researchers have devised a method called '3D wet writing' to create small-diameter arterial conduits. This technique uses ionic gelation for fabricating customizable constructs quickly and without a template. The constructs show mechanical properties similar to native blood vessels and demonstrate biocompatibility, indicating their potential use as vascular constructs.
User Cytocompatibility, biocompatibility, and biodegradability are amongst the most desirable qualities of wound dressings and can be tuned during the bioplatform fabrication steps to enhance wound healing capabilities. A three-stepped approach (partial-crosslinking, freeze-drying, and pulverisation) was employed in fabricating a particulate, partially crosslinked (PC), and transferulic acid (TFA)-loaded chitosan-alginate (CS-Alg) interpolymer complex (IPC) with enhanced wound healing capabilities.