Matrix-Bound Hyaluronan Molecular Weight as a Regulator of Dendritic Cell Immune Potency
PUBLISHED IN: Advanced Healthcare Materials Journal
ABSTRACT
Hyaluronic acid (HA) is a glycosaminoglycan in the extracellular matrix with immunoregulatory properties depending on its molecular weight (MW). However, the impact of matrix-bound HA on dendritic cells (DCs) remains unclear due to varying distribution of HA MW under different physiological conditions. To investigate DCs in defined biosystems, 3D collagen matrices modified with HA of specific MW with similar microstructure and HA levels are used. It is found that HA MW influences cytokine binding to matrix, suggesting modulation of cytokine availability by the different HA MWs . These studies on DC immune potency reveal that low MW HA (8–15 kDa) enhances immature DC differentiation and antigen uptake, while medium (MMW-HA; 500–750 kDa) and high MW HA (HMW-HA; 1250–1500 kDa) increase cytokine secretion in mature DCs. The effect on DC phenotype and cytokine secretion by different MWs of HA is independent of CD44. However, blocking the CD44 receptor reveals its potential role in regulating acute inflammation through increased secretion of CCL2, CXCL8, and IL-6. Additionally, MMW- and HMW-HA matrices reduce migratory capacity of DCs, dependent on CD44. Overall, these findings provide insights into MW-dependent effects of matrix-bound HA on DCs, opening avenues for the design of DC-modulating materials to enhance DC-based therapy.
Related Scientific Publications
Design Characteristics of a Neoteric, Superhydrophilic, Mechanically Robust Hydrogel Engineered […]
Dermal fibroblasts play a pivotal role in cell therapy, serving as versatile cells essential for tissue repair and regeneration. Their unique ability to produce extracellular matrix components contributes significantly to the efficacy and success of various cell-based therapies in treating skin-related conditions and wounds. Scaling up the production of dermal fibroblasts poses a challenge due to their limited lifespan in culture and the need to maintain their specialized functions over multiple generations...
3D bioprinting has emerged as a viable tool to fabricate 3D tissue constructs with high precision using various bioinks which offer instantaneous gelation, shape fidelity, and cytocompatibility. Among various bioinks, cellulose is the most abundantly available natural polymer & widely used as bioink for 3D bioprinting applications. To mitigate the demanding crosslinking needs of cellulose, it is frequently chemically modified or blended with other polymers to develop stable hydrogels. In this study, we have developed a thermoresponsive...
The aim of this study was to assess how transglutaminase (TG) impacts the microstructure, texture, and rheological properties of fermentation-induced pea protein emulsion gels. Additionally, the study examined the influence of storage time on the functional properties of these gels. Fermentation-induced pea protein gels were produced in the presence or absence of TG and stored for 1, 4, 8, 12, and 16 weeks. Texture analysis, rheological measurements, moisture content and microstructure evaluation...
Current treatments for glioblastoma (GBM) face challenges due to rapidly occurring tumor recurrences. In response, researchers have developed localized drug delivery systems, notably AT101-GlioMesh - an alginate-based mesh embedded with AT101-loaded PLGA microspheres. Fabricated for high encapsulation efficiency, this system ensures a sustained release of AT101, demonstrating a significant cytotoxic effect on GBM cell lines. This promising development could potentially revolutionize GBM therapy and prevent tumor recurrence.
Polysaccharide-based hydrogels offer great promise in 3D bioprinting due to their biocompatibility and cellular response, but their poor mechanical properties often require extensive crosslinking. The solution? Enter thermoresponsive bioinks. This study examines a triad of carboxymethyl cellulose, agarose, and gelatin as a potential thermoresponsive ink, demonstrating that specific blends can form stable hydrogels with desirable mechanical and physical properties. The bioinks' cytotoxicity was assessed on two cell lines according to ISO 10993-5 standards, and successful printing of complex 3D patterns confirmed their printability.