Rheolution

December 6, 2022
What is FRESH bioprinting and how it works?
Ever fantasized about sci-fi healing tanks? The principle of neutral buoyancy behind them has sparked a unique solution for 3D printing with soft, liquid-like inks. The Freeform Reversible Embedding of Suspended Hydrogels (FRESH) bioprinting technique has been developed to support the printing of these tricky materials, ideal for tissue engineering applications. The secret lies in a cleverly engineered support bath, able to hold the soft structures while permitting extruder needle movement. With versatility, high cell viability, and potential for large construct printing, FRESH opens up a world of possibilities, bringing us a step closer to 3D bioprinting patient-specific tissues based on anatomical data.
November 15, 2022
Non-planar FRESH 3D printing for complex curved structures
Exploring the frontier of 3D printing, Cornell University researchers have enhanced the Freeform Reversible Embedding of Suspended Hydrogels (FRESH) method. They introduced a computational approach for non-planar printing, enabling complex curved structures, improving printing accuracy and augmenting the mechanical properties of bioprints.
May 31, 2022
Why is 4D bioprinting important in life sciences?
4D bioprinting introduces "time" as the fourth dimension, enabling printed objects to change over time. Physical stimuli like light, temperature, or magnetism can induce transformations. The bioprinting process can also allow targeted drug release through changes in temperature or pH. Nano-hydrogels can serve as drug carriers, directed by magnetic fields, and can be quickly degraded by enzymes. Furthermore, hydrogels can react to biological signals, aiding in tumor treatment by releasing drugs then biodegrading over time.
May 19, 2022
A 4D bioink for dynamic 4D engineered tissues
4D-bioprinting introduces "time" into the printing process, allowing printed structures to evolve. Researchers from the University of Illinois Chicago used oxidized and methacrylated alginate (OMA) to develop a bioink for 4D bioprinting. They made OMA into precursor beads, then transformed them into a "microgel" that could be easily printed into stable 3D constructs. Mixed with cells, the microgel became a bioink, which was printed into complex structures. The printed constructs could be further crosslinked to create 3D scaffolds that could change shape due to differential swelling, adding the 4th dimension, "time," to the printing process.
April 21, 2022
How 3D printing technologies are used in tissue engineering ?
3D-bioprinting involves printing a biomaterial or 'bioink' that contains cells, forming structures similar to living tissues. The process requires careful optimization to ensure the material holds its shape and function, and that the cells survive the printing process. Current bioprinting techniques, such as extrusion, inkjet and laser-assisted bioprinting, come with their own advantages and limitations. The ultimate goal is to bring in vitro bioprinting into the operating room, overcoming challenges like sterility, regulation, and ethical considerations.
March 31, 2022
Controlling the molecular structure in 3D printed biomaterials
Recent advancements in 3D-bioprinting have opened the possibility of creating engineered tissues mimicking human native tissues. However, reproducing the extracellular matrix (ECM) composition and microscopic architecture within the biomaterial ink remains challenging. To tackle this, a research group from the AO Research Institute Davos developed a bioink containing both collagen type 1 and tyramine derivative hyaluronan for tissue engineering. They used optimal concentrations of these two components, along with human bone marrow-derived mesenchymal stromal cells. Two crosslinking pathways were used to induce gelation and create a 3D scaffold that was then printed using the bioink's shear-thinning properties. They successfully printed an anisotropic hydrogel, achieving control over the microscopic organization of the matrix. This breakthrough could pave the way for better mimicry of native human tissues, especially anisotropic ones, in tissue engineering applications.
January 26, 2022
Methods to 3D print alginate-based scaffolds
In January 2022, we studied alginate hydrogels in tissue engineering and drug delivery. Alginate, often used as a bioink in 3D bioprinting, forms hydrogels with tunable properties. We examined the effects of varying CaCl2 concentration on alginate crosslinking, crucial for 3D printing. Due to alginate's low viscosity, printing methods include pre-crosslinking with CaCl2, using a coaxial needle for immediate crosslinking, or mixing alginate with other biomaterials to improve printability.
June 21, 2021
The Technology to create 3D printed organs is closer that you think
The use of 3D printers to produce organs holds great potential for improving medical treatments. Hydrogels, which closely resemble the properties of tissue matrix, are used as the "ink" in this process. Human cells are incorporated into the hydrogel to provide functionality. The bioink is loaded into the printer and shaped according to a computer-aided design (CAD) model. However, there are several challenges to overcome in this process. One key challenge is ensuring the appropriate viscoelastic properties of the bioink and the final construct. Researchers are actively working on addressing these challenges to make extrusion-based 3D printing a viable option in medical care.
January 30, 2021
Thermal degradation analysis of 3D printed scaffolds using ElastoSens™ Bio
The thermoreversible behavior of some polymers relies on the large conformation changes in response to temperature. They have been investigated for a variety of clinical applications that demand an in situ gelation at physiological temperatures. In addition, these polymers have been widely studied for other biomedical applications such as drug delivery and tissue engineering in which the thermoresponsive behavior needs to be balanced with biocompatibility and degradation kinetics.