News / Rheolution Latest News / What is Viscoelasticity?
Thermal degradation analysis of 3D printed scaffolds using ElastoSens™ Bio
INTRODUCTION
MATERIALS AND METHODS
RESULTS AND DISCUSSION
Fig. 3 shows the evolution in the shear storage modulus (G’) of the gelatin gels during 7 minutes at 45 °C. For both conditions (3D printed scaffold and bulk gel), the shear modulus decreased over time confirming the complete thermal degradation of the gelatin. The 3D printed construct showed a considerably lower initial G’ (15 % of the G’ from the bulk gel) which was expected since the first is a porous structure. Another noticeable difference between the two samples was the degradation rate which was substantially higher for the bulk gel implied by the steeper slope of the curve. This difference shows that the structure influences the degradation process.
Fig. 5: Shear Elastic Modulus as a function of time of 3D printed poloxamer gels at 12 °C.
CONCLUSION
PERSPECTIVES
— ElastoSens™ Bio allows to rapidly vary the temperature in the same test for studying the thermoreversible behavior in real time of specific polymers through their viscoelasticity.
— ElastoSens™ Bio is able to capture subtle mechanical changes during gel formation and degradation.
— The direct printing inside the sample holder of the ElastoSens™ Bio avoids the excessive manipulation of soft hydrogels which can cause sample damage and contamination.
— ElastoSens™ Bio allows testing the viscoelasticity of biomaterials under different physical (e.g. photo or thermo stimulation), chemical (e.g. crosslinking solution) and physiological (e.g. enzymatic solution) conditions to simulate in vivo behaviors.
REFERENCES
[1] Hogan, K. J., & Mikos, A. G. (2020). Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. Polymer, 211, 123063.
[2] Prendergast, M. E., Solorzano, R. D., & Cabrera, D. (2017). Bioinks for biofabrication: current state and future perspectives. Journal of 3D printing in medicine, 1(1), 49-62.
[3] Furth, M. E., Atala, A., & Van Dyke, M. E. (2007). Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials, 28(34), 5068-5073.
Related Application Notes
We are your partners in viscoelasticity testing. That’s why our expert corner will be sharing with you, every 3 months, a curated selection of summarized scientific articles and original articles from our team:
- To make your life easier and save you time
- To keep you informed about what’s new in viscoelasticity testing
- To learn more about the various applications of biomaterials