Application Note
Testing the viscoelasticity of 3D printed hydrogels using ElastoSens™ Bio
by Dr. Dimitria Bonizol Camasao
Senior Application Specialist, Rheolution Inc.
INTRODUCTION
3D printing technologies offer the advantage of precisely controlling the microstructure of scaffolds used for tissue engineering applications and drug delivery systems. The macro-mechanical properties of these scaffolds are directly related to their microstructure and both are important parameters for cell behavior and drug release [1,2]. The evaluation of the scaffold mechanical properties has been conventionally performed by destructive, in contact testing techniques (e.g. compression and tensile tests). This prevents the use of the 3D printed scaffold for further characterizations and requires multiple samples to test its mechanical stability over long periods of time. In addition, technical limitation of conventional instruments are usually an issue to precisely measure the soft nature of these scaffolds. In this short application note, the viscoelastic properties of two 3D printed scaffolds made of two different materials were tested using the ElastoSens™ Bio.
MATERIALS AND METHODS
RTV silicone rubber (Dow Corning, MI, USA) and poloxamer gel (Allevi, PA, USA) were 3D printed inside the ElastoSens™ Bio sample holder (Fig. 1) to produce scaffolds with different porosities (volume fraction). The Bioscaffolder printer (Analytik, Cambridge, UK) and the Allevi 2 printer (Allevi, PA, USA) were used for printing the silicone and the poloxamer gels, respectively. Scaffold’s volume fraction was calculated as follows:
The printing patterns of the 3D printed silicone scaffolds are shown in Fig. 2. The structure varied in volume fraction (100 %, 75 %, 68 % and 54 %) by adjusting the line width (0.5 mm and 0.8 mm) and the void width (1.16 mm, 0.69 mm and 0.89 mm). A thin layer of silicone was printed between the sample and the holder to ensure their contact in order to meet the testing requirements of the ElastoSens™ Bio.
RESULTS AND DISCUSSION
For the poloxamer scaffolds, the storage modulus also decreased when porosity increased as a direct consequence of the lower amount of polymer present in the construct (Fig. 5) (lower volume fraction). Printed scaffolds with 47 % and 43 % of volume fraction had a decrease of 85 % and 88 % in the storage modulus when compared to the bulk gel, respectively.
CONCLUSION
PERSPECTIVES
REFERENCES
[1] Woo Lee, J., & Cho, D. W. (2015). 3D Printing technology over a drug delivery for tissue engineering. Current Pharmaceutical Design, 21(12), 1606-1617.
[2] Chen, Z., Zhao, D., Liu, B., Nian, G., Li, X., Yin, J., … & Yang, W. (2019). 3D Printing of Multifunctional Hydrogels. Advanced Functional Materials, 29(20), 1900971.
[3] Godau, B. (2019). Determining the effect of structure and function on 3D bioprinted hydrogel scaffolds for applications in tissue engineering (Master dissertation).
ACKNOWLEDGEMENT
Related Application Notes
We are your partners in viscoelasticity testing. That’s why our expert corner will be sharing with you, every 3 months, a curated selection of summarized scientific articles and original articles from our team:
- To make your life easier and save you time
- To keep you informed about what’s new in viscoelasticity testing
- To learn more about the various applications of biomaterials